
Pete Muir
JBoss, a Division of Red Hat

Seam 3

Road Map

Java EE 6
Java Contexts and Dependency Injection
Seam 3

Introduction

To provide a fully integrated
development platform for
building rich Internet
applications based upon the
Java EE environment.

Mission Statement

!"#$"%&%'!(")&*

+&,-.-'&%/&!0&/1%"*"23

4&5!6,7#&8",9

:.&8!0&/1%"*"23

!"#$"%&%'!(")&*

+&,-.-'&%/&!0&/1%"*"23

4&5!6,7#&8",9

:.&8!0&/1%"*"23
!"#$%

&"%'($%%
)*+,$%%

-.,/$

0,/$1"#$

0$,"*'23

4+,"5$(2

62,777

!"#
$

!"#$"%&%'!(")&*

+&,-.-'&%/&!0&/1%"*"23

4&5!6,7#&8",9

:.&8!0&/1%"*"23
!"#$%

&"%'($%%
)*+,$%%

-.,/$

0,/$1"#$

0$,"*'23

4+,"5$(2

62,777

JBoss Application
Server

JBoss Application
Server

JBoss Enterprise
Application Platform

JBoss SOA Platform

JBoss Application
Server

WebSphere Web Logic

Glassfish

JBoss Enterprise
Application Platform

JBoss SOA Platform

JBoss Application
Server

WebSphere

Tomcat

Web Logic

Glassfish

JBoss Enterprise
Application Platform

JBoss SOA Platform

The Seam Stack
• A complete solution for developing applications

based upon Java EE standards

• The stack consists of...
– Java EE integration
– Declarative security
– Page flows (jPDL) and business processes

(jBPM)
– JavaScript remoting or AJAX through view layer
– Email, graphics, PDF, and XLS
– Spring integration and more...
– Other view layers - Wicket, Flex

Getting started...is easy!
• Focus on delivering useful functionality to users

early on, then repeat
– Project generator, component templates,

reverse engineering tool (from Java classes or
database)

• Eclipse tooling – JBoss Developer Studio (JBDS)
– Key benefit of working in Java is refactoring
– JBoss tooling takes every advantage of it
– Forms for all configuration files
– Visual page and navigation editors

• Incremental hot deployment

Road Map

Java EE 6
Java Contexts and Dependency Injection
Seam 3

Introduction

Web Profile
• The EE 6 web profile removes most of the “cruft”

that has developed over the years
– Full stack for building web applications
– mainly the totally useless stuff like web

services, EJB 2 entity beans, etc
– some useful stuff like JMS is also missing, but

vendors can include it if they like

JSF2
• Convention over configuration

• Facelets added to spec
– no change to view definition

• Easy component creation
– inspired by facelets

• View parameters
– state held in bookmarkable URL
– easily generate links and buttons for navigation

• Built in resource handling

JSF2
• Integrated AJAX support

– inspired by Ajax4jsf, IceFaces

• Exception handling
– good ootb behavior, pluggable

• New event systems
– including declarative events

• Bean validation integration

• Project stages
– add extra debug info automatically

EJB 3.1
• No interface views

– great for prototyping!

• Embeddable EJB
– for unit testing

• Singletons

• Async support

• natural timer syntax

• Portable global JNDI

And more...
• Bean Validation 1.0

– annotation-based validation API
– integrates cleanly with JSF2, JPA2, Spring etc.

for model based validation

• JPA 2.0
– typesafe criteria query API
– many more O/R mapping options - no need to

use Hibernate APIs :-)

JSR-299
• Spec formally known as “Web Beans”, now Java

Contexts and Dependency Injection

• defines a unifying dependency injection and
contextual lifecycle model
– a new, rich, dependency management model
– designed for use with stateful objects
– integrates the “web” and “transactional” tiers
– makes it much easier to build applications

using JSF and EJB together
– includes a complete SPI allowing third-party

frameworks to integrate cleanly in the EE 6
environment

Road Map

Java EE 6
Java Contexts and Dependency Injection
Seam 3

Introduction

Contextual objects
• What can be injected?

– (Almost) any Java class
– EJB session beans
– Objects returned by producer methods
– Java EE resources (Datasources, JMS topics/

queues, etc)
– Persistence contexts (JPA EntityManager)
– Web service references
– Remote EJBs references

Loose coupling
• Events, interceptors and decorators enhance the

loose-coupling that is inherent in this model:
– event notifications decouple event producers

from event consumers
– interceptors decouple technical concerns from

business logic
– decorators allow business concerns to be

compartmentalized

Essential ingrediants
• API types

• Binding annotations

• Scope

• Deployment type

• A name (optional)

• Interceptor bindings

• The implementation

Simple Example

Any Java Bean can use
these services

public class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

@Stateless
public class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

So can EJBs

Simple Example

public class Printer {

 @Current Hello hello;

 public void hello() {
 System.out.println(hello.hello("world"));
 }
}

@Current is the default
(built in) binding type

Web Bean Names

@Named("hello")
public class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

By default not available through EL.

@Named
public class Hello {
 public String hello(String name) {
 return "hello" + name;
 }
}

If no name is specified, then a
default name is used. Both these
beans have the same name

JSF Page

<h:commandButton value=”Say Hello”
 action=”#{hello.hello}”/>

Calling an action on a bean
through EL

Binding Types
• A binding type is an annotation that lets a client

choose between multiple implementations of an
API at runtime
– Binding types replace lookup via string-based

names

– @Current is the default binding type

Define a binding type

public
@BindingType
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Casual {}

Creating a binding type is
really easy!

Using a binding type

@Casual
public class Hi extends Hello {
 public String hello(String name) {
 return "hi" + name;
 }
}

We also specify the @Casual binding
type. If no binding type is specified on
a bean, @Current is assumed

Using a binding type

public class Printer {
 @Casual Hello hello;
 public void hello() {
 System.out.println(hello.hello("JBoss"));
 }
}

Here we inject the Hello
bean, and require an
implementation which is
bound to @Casual

Scopes and Contexts
• Dependent scope, @Dependent

• Built-in scopes:
– Any servlet

• @ApplicationScoped
• @RequestScoped
• @SessionScoped

– JSF requests - @ConversationScoped

• Custom scopes

Scopes

@SessionScoped
public class Login {
 private User user;
 public void login() {
 user = ...;
 }
 public User getUser() { return user; }
}

Session scoped

Scopes

public class Printer {

 @Current Hello hello;
 @Current Login login;

 public void hello() {
 System.out.println(
 hello.hello(login.getUser().getName()));
 }
}

No coupling between scope
and use of implementation

Producer methods
• Producer methods allow control over the

production of a Web Bean where:
– the objects to be injected are not required to

be instances of Web Beans
– the concrete type of the objects to be injected

may vary at runtime
– the objects require some custom initialization

that is not performed by the Web Bean
constructor

Producer methods

@SessionScoped
public class Login {
 private User user;
 public void login() {
 user = ...;
 }

 @Produces
 User getUser() { return user; }
}

Producer methods

public class Printer {
 @Current Hello hello;
 @Current User user;
 public void hello() {
 System.out.println(
 hello.hello(user.getName()));
 }
}

Much better, no
dependency on Login!

Java EE Resources
• To inject Java EE resources, persistence contexts, web service

references, remote EJB references, etc, we use a special kind of
producer field declaration:

public class PricesTopic {
 @Produces @Prices
 @Resource(name="java:global/env/jms/Prices")
 Topic pricesTopic;
}

public class UserDatabasePersistenceContext {
 @Produces @UserDatabase
 @PersistenceContext
 EntityManager userDatabase;
}

Road Map

Java EE 6
Java Contexts and Dependency Injection
Seam 3

Introduction

Key themes
• Loose coupling

– pick and choose the modules you want

• Portability
– run the modules in any JCDI environment

• Full stack
– all core modules tested together, with

examples showing how to use

• Sandbox for new module ideas

Environments
• JSR-299 is targeted at

– Java EE
– Java EE web profile
– Use with EJB 3.1 Embeddable

• Web Beans add supports for
– Servlet containers like Tomcat or Jetty
– Java SE

•

Integrations
• Other DI frameworks

– Seam 2 bridge
– Spring bridge
– Guice bridge

• A Seam 2 native layer for supporting Seam style
dependency injection

• View layers
– JCDI requires JSF support
– Wicket
– Flex and other planned

Portable modules
• can be used in any JSR-299 environment

– jBPM
– log injection (choose between log4j and jlr,

parameter interpolation
– Seam Security
– Reporting

• Excel
• PDF

– Mail
– Javascript remoting

Web Beans
• JSR-299 forms the core of Seam

• Web Beans is the Reference implementation
– Currently feature complete preview

• Download it, try it out, give feedback!

• Supported in this release:
– JBoss 5.1.CR1
– GlassFish V3 build 46
– Tomcat 6.0.x
– Jetty 6.1.x

Seam 3
• Just getting started!

Q & A

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org/

http://in.relation.to/Bloggers/Pete
http://in.relation.to/Bloggers/Pete
http://www.seamframework.org
http://www.seamframework.org

