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To provide a fully integrated 
development platform for 
building rich Internet 
applications based upon the 
Java EE environment.

Mission Statement
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The Seam Stack
• A complete solution for developing applications 

based upon Java EE standards

• The stack consists of...
– Java EE integration
– Declarative security
– Page flows (jPDL) and business processes 

(jBPM)
– JavaScript remoting or AJAX through view layer
– Email, graphics, PDF, and XLS
– Spring integration and more...
– Other view layers - Wicket, Flex



Getting started...is easy!
• Focus on delivering useful functionality to users 

early on, then repeat
– Project generator, component templates, 

reverse engineering tool (from Java classes or 
database)

• Eclipse tooling – JBoss Developer Studio (JBDS)
– Key benefit of working in Java is refactoring
– JBoss tooling takes every advantage of it
– Forms for all configuration files
– Visual page and navigation editors

• Incremental hot deployment
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Web Profile
• The EE 6 web profile removes most of the “cruft” 

that has developed over the years
– Full stack for building web applications
– mainly the totally useless stuff like web 

services, EJB 2 entity beans, etc 
– some useful stuff like JMS is also missing, but 

vendors can include it if they like 



JSF2
• Convention over configuration 

• Facelets added to spec 
– no change to view definition

• Easy component creation 
– inspired by facelets

• View parameters 
– state held in bookmarkable URL
– easily generate links and buttons for navigation

• Built in resource handling



JSF2
• Integrated AJAX support

– inspired by Ajax4jsf, IceFaces

• Exception handling
– good ootb behavior, pluggable

• New event systems
– including declarative events

• Bean validation integration

• Project stages 
– add extra debug info automatically



EJB 3.1
• No interface views 

– great for prototyping!

• Embeddable EJB 
– for unit testing

• Singletons

• Async support 

• natural timer syntax

• Portable global JNDI



And more...
• Bean Validation 1.0 

– annotation-based validation API
– integrates cleanly with JSF2, JPA2, Spring etc. 

for model based validation

• JPA 2.0 
– typesafe criteria query API
– many more O/R mapping options - no need to 

use Hibernate APIs :-)



JSR-299
• Spec formally known as “Web Beans”, now Java 

Contexts and Dependency Injection

• defines a unifying dependency injection and 
contextual lifecycle model
– a new, rich, dependency management model
– designed for use with stateful objects 
– integrates the “web” and “transactional” tiers 
– makes it much easier to build applications 

using JSF and EJB together 
– includes a complete SPI allowing third-party 

frameworks to integrate cleanly in the EE 6 
environment 
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Contextual objects
• What can be injected?

– (Almost) any Java class 
– EJB session beans 
– Objects returned by producer methods 
– Java EE resources (Datasources, JMS topics/

queues, etc) 
– Persistence contexts (JPA EntityManager) 
– Web service references 
– Remote EJBs references 



Loose coupling
• Events, interceptors and decorators enhance the 

loose-coupling that is inherent in this model:
– event notifications decouple event producers 

from event consumers
– interceptors decouple technical concerns from 

business logic
– decorators allow business concerns to be 

compartmentalized



Essential ingrediants
• API types

• Binding annotations

• Scope 

• Deployment type 

• A name (optional)

• Interceptor bindings

• The implementation



Simple Example

Any Java Bean can use 
these services

public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

@Stateless
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

So can EJBs



Simple Example

public class Printer { 

   @Current Hello hello; 

   public void hello() { 
      System.out.println( hello.hello("world") ); 
   } 
}

@Current is the default 
(built in) binding type



Web Bean Names

@Named("hello") 
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

By default not available through EL.

@Named 
public class Hello { 
   public String hello(String name) { 
      return "hello" + name; 
   } 
}

If no name is specified, then a 
default name is used. Both these 
beans have the same name



JSF Page

<h:commandButton value=”Say Hello” 
                 action=”#{hello.hello}”/>

Calling an action on a bean 
through EL



Binding Types 
• A binding type is an annotation that lets a client 

choose between multiple implementations of an 
API at runtime
– Binding types replace lookup via string-based 

names 

– @Current is the default binding type



Define a binding type

public 
@BindingType
@Retention(RUNTIME) 
@Target({TYPE, METHOD, FIELD, PARAMETER}) 
@interface Casual {}

Creating a binding type is 
really easy!



Using a binding type

@Casual 
public class Hi extends Hello { 
   public String hello(String name) { 
      return "hi" + name; 
   } 
}

We also specify the @Casual binding 
type. If no binding type is specified on 
a bean, @Current is assumed



Using a binding type

public class Printer { 
   @Casual Hello hello;
   public void hello() { 
      System.out.println( hello.hello("JBoss") ); 
   } 
}

Here we inject the Hello 
bean, and require an 
implementation which is 
bound to @Casual



Scopes and Contexts
• Dependent scope, @Dependent

• Built-in scopes: 
– Any servlet

• @ApplicationScoped
• @RequestScoped
• @SessionScoped 

– JSF requests - @ConversationScoped 

• Custom scopes



Scopes

@SessionScoped
public class Login { 
   private User user; 
   public void login() { 
      user = ...; 
   } 
   public User getUser() { return user; } 
}

Session scoped



Scopes

public class Printer {

   @Current Hello hello; 
   @Current Login login; 

   public void hello() { 
      System.out.println( 
         hello.hello( login.getUser().getName() ) ); 
   } 
}

No coupling between scope 
and use of implementation



Producer methods
• Producer methods allow control over the 

production of a Web Bean where:
– the objects to be injected are not required to 

be instances of Web Beans
– the concrete type of the objects to be injected 

may vary at runtime
– the objects require some custom initialization 

that is not performed by the Web Bean 
constructor 



Producer methods

@SessionScoped 
public class Login { 
   private User user; 
   public void login() { 
      user = ...; 
   } 
   
   @Produces
   User getUser() { return user; } 
}



Producer methods

public class Printer { 
   @Current Hello hello; 
   @Current User user; 
   public void hello() { 
      System.out.println( 
         hello.hello( user.getName() ) ); 
   } 
}

Much better, no 
dependency on Login!



Java EE Resources
•  To inject Java EE resources, persistence contexts, web service 

references, remote EJB references, etc, we use a special kind of 
producer field declaration: 

public class PricesTopic { 
   @Produces @Prices
   @Resource(name="java:global/env/jms/Prices") 
   Topic pricesTopic; 
} 

public class UserDatabasePersistenceContext { 
   @Produces @UserDatabase
   @PersistenceContext
   EntityManager userDatabase; 
} 
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Key themes
• Loose coupling 

– pick and choose the modules you want

• Portability
– run the modules in any JCDI environment

• Full stack
– all core modules tested together, with 

examples showing how to use

• Sandbox for new module ideas



Environments
• JSR-299 is targeted at

– Java EE
– Java EE web profile
– Use with EJB 3.1 Embeddable

• Web Beans add supports for
– Servlet containers like Tomcat or Jetty
– Java SE

•



Integrations
• Other DI frameworks

– Seam 2 bridge
– Spring bridge
– Guice bridge

• A Seam 2 native layer for supporting Seam style 
dependency injection

• View layers
– JCDI requires JSF support
– Wicket
– Flex and other planned



Portable modules
• can be used in any JSR-299 environment

– jBPM
– log injection (choose between log4j and jlr, 

parameter interpolation
– Seam Security
– Reporting 

• Excel
• PDF

– Mail
– Javascript remoting



Web Beans
• JSR-299 forms the core of Seam

• Web Beans is the Reference implementation
– Currently feature complete preview

• Download it, try it out, give feedback!

• Supported in this release:
– JBoss 5.1.CR1
– GlassFish V3 build 46
– Tomcat 6.0.x
– Jetty 6.1.x



Seam 3
• Just getting started!



Q & A

http://in.relation.to/Bloggers/Pete

http://www.seamframework.org/
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